skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perrin, Alice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. We measured the change in the average hyperfine field strength of several high entropy alloys in relation to small compositional deviations from the equiatomic alloy, FeCoNiCuMn. Mössbauer spectra of four psuedo-binary systems, in which Mn content is increased and another element was decreased in equal measure, reveal several discrete peaks in the hyperfine field distribution that show evidence of the discrete exchange interactions between magnetic elements in the alloy. A simple linear regression modelling the perturbation of the average hyperfine field when the composition is altered calculates the contribution of each atom to the overall average. The average hyperfine field is linear with Tc, so these values allow us to estimate Tc for alloys with more complex compositional variation within the window of linearity (<24% Mn based on other alloys). The results were confirmed experimentally by calculating Tc of two new alloys, Fe19Co20Ni19Cu19Mn23 and Fe19Co20Ni19Cu20Mn22. 
    more » « less